Robert M. Corless
Department of Applied Mathematics
University of Western Ontario
London, Canada

Copyright 2001 by Robert M. Corless
All rights reserved

Useful one-word commands 

Использование монокоманд

Plotting in Maple 

Графика в Maple

Contour plots and other plots 

Контурные графики и другие рисунки

> restart;
> with(plots):
Warning, the name changecoords has been redefined
> f1 := sin(y-x^2-1) + cos(2*y^2-x);

f1 := -sin(-y+x^2+1)+cos(-2*y^2+x)

> contourplot( f1, x=-2..2, y=-2..2, grid=[100,100], colour=black, scaling=CONSTRAINED, axes=BOXED);

> f2 := y + sin(x^2*y-1/x);

f2 := y+sin(x^2*y-1/x)

> contourplot( f2, x=-Pi..Pi, y=-Pi..Pi, grid=[100,100], colour=black, axes=BOXED, scaling=CONSTRAINED );

> restart;
> tacnode := 2*x^4 - 3*x^2*y + y^4 - 2*y^3 + y^2;

tacnode := 2*x^4-3*x^2*y+y^4-2*y^3+y^2

> algcurves[plot_real_curve]( tacnode, x, y, colorOfCurve=COLOR(RGB,0,0,0), axes=NONE, view=[-2..2,-1..3] );

[Maple Plot]

> plots[implicitplot]( tacnode, x=-2..2, y=-1..3, axes=NONE, colour=BLACK, view=[-2..2,-1..3] );

> plots[implicitplot]( tacnode, x=-2..2, y=-1..3, grid=[100,100], axes=NONE, colour=BLACK, view=[-2..2,-1..3] );

> plots[implicitplot]( tacnode, x=-2..2, y=-1..3, grid=[400,400], axes=NONE, colour=BLACK, view=[-2..2,-1..3] );

> algcurves[plot_real_curve]( y*exp(y)-x, x, y, force=true );

[Maple Plot]

> restart;
> with(plots):
> van_der_Pol := diff(x(t),t,t) - epsilon*(1-x(t)^2)*diff(x(t),t) + x(t);

van_der_Pol := diff(x(t),`$`(t,2))-epsilon*(1-x(t)^...

> eq1 := eval(van_der_Pol,epsilon=1):
> eq500 := eval(van_der_Pol,epsilon=500):
> sol1 := dsolve( {eq1,x(0)=2,D(x)(0)=0}, x(t), numeric,
range=0..10, stiff=true );

sol1 := proc (rosenbrock_x) local i, comp_soln_data...

> plots[odeplot]( sol1, [x(t),diff(x(t),t)], colour=black );

> sol500 := dsolve( {eq500,x(0)=2,D(x)(0)=0}, x(t), numeric,
range=0..1000, stiff=true );

sol500 := proc (rosenbrock_x) local i, comp_soln_da...

> plots[odeplot]( sol500, [x(t),diff(x(t),t)], colour=black );

> BenderOrszag := diff(y(t),t) = cos(Pi*t*y(t));

BenderOrszag := diff(y(t),t) = cos(Pi*t*y(t))

> sols := {seq(dsolve({BenderOrszag,y(0)=k/5},y(t),numeric,range=0..5),k=0..20)}:
> plts := {seq(odeplot(sols[i],[t,y(t)],colour=black),i=1..nops(sols))}:
> display( plts );

> PredatorPrey := {diff(x(t),t) = -3*x(t)+4*x(t)^2-x(t)*y(t)/2-x(t)^3,
diff(y(t),t) = -2.1*y(t)+x(t)*y(t)};

> ics := [seq({x(0)=4,y(0)=k/8},k=0..32)]:

> sols := {seq( dsolve( PredatorPrey union ics[i], {x(t),y(t)}, numeric, range=0..100 ),i=1..nops(ics)) }:

> plts := { seq(odeplot(sols[i],[x(t),y(t)],colour=black),i=1..nops(sols)) }:
> display( plts );

С официального разрешения                    © 2002 Waterloo Maple, Inc

 
Hosted by uCoz