Robert M. Corless
Department of Applied Mathematics
University of Western Ontario
London, Canada

Copyright 2001 by Robert M. Corless
All rights reserved

Useful one-word commands 

Использование монокоманд

Simplification 

Упрощение

factor

Команда factor

> restart;
> with(LinearAlgebra):
> A := Matrix( [[-149,-50,-154], [537,180,546], [-27,-9,-25]] );

A := _rtable[18232412]

> E := Matrix( [[130, -390, 0], [43, -129, 0], [133,-399,0]] );

E := _rtable[19443772]

> AtE := simplify( A + t*E );

AtE := _rtable[19445852]

> p := CharacteristicPolynomial(AtE,x);

p := -6+11*x-1221271*t+492512*t*x-6*x^2-t*x^2+x^3

> d := discrim( p, x );

> alfs := [fsolve( d, t, complex )];

> map(abs,alfs);

[.7837924906e-6, .3267988117e-5, .3267988117e-5, 19...

> realroot( d, 10^(-14) );

> evalf(%);

> alias( t[0]=RootOf( d, t ) );

t[0]

> As := eval( AtE, t=t[0] );

As := _rtable[19450156]

> eigs := Eigenvalues( As );

> evalf( % );

_rtable[17838844]

> pf := eval( p, t=t[0] );

pf := -6+11*x-1221271*t[0]+492512*t[0]*x-6*x^2-t[0]...

> factor( pf );

> p2 := eval( p, t=t/1.0e6 );

> algcurves[plot_real_curve]( p2, x, t, view=[1..3,0..1.0] );

> restart;
> with(LinearAlgebra):
> Yee := Matrix( 8,8,
[[1/e, 1/e, 1/e, 1/e, 1/e, 1/e, 1/e, 0],
[1, 1, 1, 1, 1, 1, 0, 1],
[1, 1, 1, 1, 1, 0, 1, 1],
[1, 1, 1, 1, 0, 1, 1, 1],
[1, 1, 1, 0, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 1, 1, 1],
[1, 0, 1, 1, 1, 1, 1, 1],
[0, e, e, e, e, e, e, e]]);

Yee := _rtable[14284868]

> p := CharacteristicPolynomial( Yee, lambda );

> factor(p);

-(-1+lambda)^3*(lambda+1)^3*(-lambda^2*e+6*lambda*e...

> quad_factor := normal( e*p/(lambda-1)^3/(lambda+1)^3 );

quad_factor := lambda^2*e-6*lambda*e-lambda*e^2-lam...

> d := discrim( quad_factor, lambda );

d := 10*e^2+12*e^3+12*e+e^4+1

> factor( d );

10*e^2+12*e^3+12*e+e^4+1

> alias( alpha=RootOf(d,e) );

alpha

> pe := eval( p, e=alpha );

> factor( pe );

1/4*(2*lambda+6+9*alpha+12*alpha^2+alpha^3)^2*(lamb...

> r := resultant(quad_factor,lambda-1,lambda);

r := 2*e-e^2-1

> factor( r );

-(e-1)^2

> r := resultant( quad_factor, lambda+1, lambda );

r := 14*e+e^2+1

> factor( r );

14*e+e^2+1

> alias( beta=RootOf(r,e) );

alpha, beta

> factor( eval(p, e=beta) );

(lambda+7)*(lambda-1)^3*(lambda+1)^4

С официального разрешения                    © 2002 Waterloo Maple, Inc

 
Hosted by uCoz