Robert M. Corless
Department of Applied Mathematics
University of Western Ontario
London, Canada

Copyright 2001 by Robert M. Corless
All rights reserved

Basics

Основы

Evaluation rules 

Правила оценивания

Inert functions  Инертные функции

> restart;
> Digits := 30;

Digits := 30

> ratio := Vector(10):
> for k to 10 do
> n := rand()/10^13;
> m := rand()/10^13;
> tn := time( evalf(int( t*tan(n*t), t=0..1)) );
> tm := time( evalf(Int( t*tan(m*t), t=0..1)) );
> ratio[k] := evalf(tn/tm,3);
    end do:
> seq( ratio[k], k=1..10 );

2.00, 1.54, 1.10, 1.87, 1.95, 2.02, 1.95, 1.82, 1.7...

> restart;
> with( LinearAlgebra ):
> A := RandomMatrix( 5, 5 );

A := _rtable[14274828]

> Eigenvalues( A );
> Eigenvalues( evalf(A) );

_rtable[14251708]

> SingularValues( evalf(A) );

_rtable[14251788]

> S := Sum( 1/k^2, k=1..infinity );

S := Sum(1/(k^2),k = 1 .. infinity)

> evalf( S );

1.644934067

> S := Sum(1/sqrt(k),k=1..infinity);

S := Sum(1/(sqrt(k)),k = 1 .. infinity)

> value( S );

infinity

> evalf( S );

-1.460354509

> B := Int( ln(x)/(1-x^2), x );

B := Int(ln(x)/(1-x^2),x)

> value( B );

1/2*dilog(x)+1/2*dilog(x+1)+1/2*ln(x)*ln(x+1)

> p := x^5 + x^3 + x;

p := x^5+x^3+x

> Factor(p) mod 2;

(x^2+x+1)^2*x

> q := diff(p,x) mod 2;

q := x^4+x^2+1

> Gcd(p, q);

Gcd(x^5+x^3+x,x^4+x^2+1)

> Gcd(p,q) mod 2;

x^4+x^2+1

С официального разрешения                    © 2002 Waterloo Maple, Inc

 
Hosted by uCoz