>
f7:= x
->cos(x)
+
cos(2*x);
![f7 := proc (x) options operator, arrow; cos(x)+cos(...](xxx.files/C1-14R35.gif)
>
plot(f7(x),
x =
0..2*Pi,
color =
black);
![[Maple Plot]](xxx.files/C1-14R36.gif)
>
simplify(
cos(x) +
cos(2*x));
![cos(x)+2*cos(x)^2-1](xxx.files/C1-14R37.gif)
>
factor(%);
![(cos(x)+1)*(2*cos(x)-1)](xxx.files/C1-14R38.gif)
Опять
применили
метод
разложения
левой
части
уравнения
на
множители:
cos(x) =
-1 или 2
cos(x) =
1.
>
plot(cos(x)
+ 1, x =
0..2*Pi,
color =
black);
![[Maple Plot]](xxx.files/C1-14R39.gif)
>
solve(cos(x)
+ 1 =
0,x);
![Pi](xxx.files/C1-14R40.gif)
>
plot(2 *
cos(x) -
1, x =
0..2 *
Pi,
color =
black);
![[Maple Plot]](xxx.files/C1-14R41.gif)
>
solve(2
* cos(x)
- 1,x);
![1/3*Pi](xxx.files/C1-14R42.gif)
Решения:
![Pi, 1/3*Pi, 5/3*Pi](xxx.files/C1-14R43.gif)